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Abstract Recursive procedures that allow placing a vocal signal inside another of a similar kind 
provide a neuro- computational blueprint for syntax and phonology in spoken language and human 
song. There are, however, no known vocal sequences among nonhuman primates arranged in self- 
embedded patterns that evince vocal recursion or potential incipient or evolutionary transitional 
forms thereof, suggesting a neuro- cognitive transformation exclusive to humans. Here, we uncover 
that wild flanged male orangutan long calls feature rhythmically isochronous call sequences nested 
within isochronous call sequences, consistent with two hierarchical strata. Remarkably, three tempo-
rally and acoustically distinct call rhythms in the lower stratum were not related to the overarching 
rhythm at the higher stratum by any low multiples, which suggests that these recursive structures 
were neither the result of parallel non- hierarchical procedures nor anatomical artifacts of bodily 
constraints or resonances. Findings represent a case of temporally recursive hominid vocal combi-
natorics in the absence of syntax, semantics, phonology, or music. Second- order combinatorics, 
‘sequences within sequences’, involving hierarchically organized and cyclically structured vocal 
sounds in ancient hominids may have preluded the evolution of recursion in modern language- able 
humans.

eLife assessment
The paper represents a novel application of recursion theory to the long call vocalizations of 
orangutans to demonstrate repetitive, rhythmic sub- structuring. The authors use detailed acoustic 
analyses to show compelling evidence for self- embedded and nested isochronic motifs. These 
fundamental results have the potential to significantly advance current approaches used to compare 
nonhuman communication systems with human language.

Introduction
Among the many definitions of recursion (Martins, 2012), the view that it represents the repetition of 
an element or pattern within a self- similar element or pattern has crossed centuries and disciplines, 
from von Humboldt, 1836 and Hockett, 1960 to Mandelbrot, 1980 and Chomsky, 2010; from frac-
tals in mathematics (Mandelbrot, 1980) to generative grammars in linguistics (Chomsky, 2010), from 
graphic (e.g., ‘Print Gallery’ by M. C. Escher) to popular art (e.g., 1940’s Batman #8 comic book cover). 
Across varying terminologies, the common denominator across fields is that to re- curse (from the Latin 
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to ‘re- run’ or ‘re- invoke’) is an operation that produces multiple, potentially infinite sets of items from 
one initial item or a finite set. This is achieved by nesting an item within itself or within another item of 
the same kind. Recursive patterns in everyday life are ubiquitous and include, for example, computer 
folders stored inside other computer folders, Russian dolls nested in each other, Romanesco broccoli’s 
spirals arranged in a spiral, and the same number of minutes passed within the same number of hours 
(e.g., 12:12). Accordingly, recursion is not the simple repetition of a pattern or item on a single level 
(e.g., computer folders or Russian dolls side by side), but the placement of a pattern or item within 
itself (e.g., computer folders or Russian dolls inside each other), hence, generating different hierar-
chical levels or strata. This means that the same pattern or item is encountered at least at two different 
scales (e.g., 12 at the scale of hours, and 12 at the scale of minutes).

In language, although classically associated with syntax (Chomsky, 2010; Idsardi et al., 2018), 
recursion and its diagnostic self- embedded patterns have been recognized in phonology (Bennett, 
2018; Elfner, 2015; Barış and Revithiadou, 2009; Nasukawa, 2015; Nasukawa, 2020; Vogel, 2012) 
and in verbal and non- verbal music (Jackendoff, 2009; Koelsch et al., 2013; Martins et al., 2017; 
Sharma and Chimalakonda, 2018), making these systems open- ended and theoretically inexhaust-
ible. Recursive vocal sequences or structures in nonhuman primates could potentially inform incipient 
or transitional states of recursion along human evolution before the rise of modern language. However, 
their apparent absence, notably in great apes – our closest living relatives – has been interpreted as 
indicating that a neuro- cognitive or neuro- computational transformation occurred in our lineage but 
none other (Hauser et al., 2002). This absence of evidence has led some scholars to question alto-
gether the role of natural selection for the emergence of language, tacitly favoring sudden ‘hopeful 
monster’ mutant scenarios (Berwick and Chomsky, 2019; Bolhuis and Wynne, 2009).

Decades- long debates on the evolution of language have carved around the successes and limita-
tions of empirical comparative animal research (Bolhuis et  al., 2018; Bowling and Fitch, 2015; 
Corballis, 2014; Lameira, 2017a; Lameira and Call, 2020; Martins and Boeckx, 2019; Rawski et al., 
2021; Townsend et  al., 2018). Syntax- like vocal combinatorics have been identified in some bird 

eLife digest Language is the most powerful communication tool known in nature. By combining 
a finite set of elements, it allows us to encode infinite messages. This enables communication about 
virtually anything, from alerting others to potential dangers, to recommending a favourite book. The 
prevailing theory of the last 70 years suggests that this ability rests on a computational process in the 
brain that is unique to humans, known as recursion.

Recursion enables humans to produce and place a language element or pattern of elements inside 
another element or pattern of the same kind. In this way, a clause can be embedded inside another 
‘carrier’ clause to extend a thought, argument, or scenario, for example, “the dog, which chased the 
cat, was barking”. While recursion offers a simple, yet potent, explanation for the endless possibilities 
of language, how and why recursion – and by extension language – emerged in humans but no other 
animals remains a mystery.

Lameira et al. observed vocal patterns in wild orangutans that appeared to be composed of 
different elements. As orangutans and other great apes are our closest living relatives, they represent 
the most realistic model for studying the ability of human ancestors to use and comprehend language. 
Therefore, Lameira et al. set out to determine if this was a case of vocal patterning embedded within 
a similar vocal pattern, which could indicate that recursion underpins production of these calls.

Analysing recordings of long calls made by wild male orangutans showed that they are organized 
as two layers, where calls with a regular beat (or tempo) are produced within another “carrier” call of 
a different tempo. Up to three different call types, each with their own signature tempo, can occur 
within the same carrier call. Further analysis confirmed these call types were unrelated to the carrier.

The findings of Lameira et al. demonstrate that orangutans produce recursive vocal sequences that 
could represent a possible precursor to recursion in humans, offering a potential avenue for studying 
how recursion, and ultimately language, evolved in humans. In the future, better understanding of 
how language evolved may help to refine machine learning algorithms that aim to recognize, predict 
or generate text.

https://doi.org/10.7554/eLife.88348


 Research article      Physics of Living Systems

Lameira et al. eLife 2023;12:RP88348. DOI: https://doi.org/10.7554/eLife.88348  3 of 14

(Engesser et al., 2019; Engesser et al., 2016; Suzuki et al., 2016; Suzuki et al., 2017) and primate 
species (Jiang et al., 2018; Wang et al., 2015; Watson et al., 2020), but vocal combinatorics were 
not claimed to be recursive nor was recursion directly tested. Three notable exceptions demonstrated 
recursion learning in nonhuman animal settings: (Gentner et al., 2006) in European starlings, Ferrigno 
et al., 2020 in rhesus macaques, and Liao et al., 2022 in crows. These studies show that animals can 
learn to recognize recursion in synthetic stimuli after dedicated human training in laboratory settings, 
but they do not show spontaneous production of recursive vocal combinatorics in naturalistic settings. 
Evidence of recursive vocal structures in wild animals (i.e., without human priming or intervention), 
notably in primates closely related to humans, such as great apes, would better inform what evolu-
tionary precursors and processes could have led to the emergence of recursion in the human lineage.

Direct structural approach to recursive combinatorics
A novel, direct approach to recursive vocal combinatorics in wild primates is desirable to help infer 
signal patterns that were recursive in some degree or kind in an extinct past, and molded subse-
quently into the recursive structures observed today in humans. By virtue of their own primitive nature, 
proto- recursive structures did not likely fall within modern- day classifications. Therefore, they will 
often fail to be predicted based on assumptions guided by modern language (Kershenbaum et al., 
2014; Miyagawa, 2021). To this end, a structural approach is particularly advantageous based on the 
cross- disciplinary definition of recursion as ‘the nesting of an element or pattern within a self- similar 
element or pattern’. First, no prior assumptions are required about species’ cognitive capacities. 
High- level neuro- motor procedures are inferred only to the extent that these are directly reflected 
in how signal sequences are organized. For example, Chomsky’s definition of recursion (Chomsky, 
2010) can generate non- self- embedded signal structures, but these would be for that same reason 
operationally undetectable amongst other signal combinations. Second, no prior assumptions are 
required about signal meaning. There are no certain parallels between semantic content and word 
meaning in animals, but analyses of signal patterning allow us to identify the similarities between non- 
semantic (nonhuman) and semantic (human) combinatoric systems (Lipkind et al., 2013; Sainburg 
et al., 2019). The search for recursion can, hence, be made in the absence of lexical items, semantics, 
or syntax. Third, no prior assumptions are required about signal function. Under any evolutionary 
scenario, including punctuated hypotheses, ancestral signal function (whether cooperative, compet-
itive, or otherwise) is expected to have derived or been leveraged by its proto- recursive structure. 
Otherwise, once present, recursion would not have been fixated among human ancestral populations. 
Accordingly, a structural approach opens the field to potentially untapped signal diversity in nature 
and yet unrecognized bona fide combinatoric possibilities within the human clade.

Exploring recursive combinatorics in a wild great ape
Here, we undertake an explorative but direct structural approach to recursion. We provide evidence 
for recursive self- embedded vocal patterning in a (nonhuman) great ape, namely, in the long calls of 
flanged orangutan males in the wild. We conducted precise rhythm analyses (De Gregorio et al., 2021; 
Roeske et al., 2020) of 66 long call audio recordings produced by 10 orangutans (Pongo pygmaeus 
wurmbii) across approximately 2510 observation hours at Tuanan, Central Kalimantan, Indonesian 
Borneo. We identified five different element types that comprise the structural building blocks of 
long calls in the wild (Hardus et al., 2009; Lameira and Wich, 2008), of which the primary type are 
full pulses (Figure 1A). Full pulses do not, however, always exhibit uninterrupted vocal production 
throughout a long call (as during a long call’s climax; Spillmann et al., 2010) but can break up into 
four different ‘sub- pulse’ element types: (i) grumble sub- pulses (quick succession of staccato calls that 
typically constitute the first build- up pulses of long calls; Hardus et al., 2009), (ii) sub- pulse transitory 
elements and (iii) pulse bodies (typically constituting pulses before and/or after climax pulses), and 
(iv) bubble sub- pulses (quick succession of staccato calls that typically constitute the last tail- off pulses 
of long calls) (Figure 1A). We characterized long calls’ full- and sub- pulses’ rhythmicity to determine 
whether orangutan long calls present a reiterated structure across different hierarchical strata. We 
extracted inter- onset intervals (IOIs; i.e., time difference between the start of a vocal element and 
the preceding one – tk) from 8993 vocal long call elements (Figure 1A): 1930 full pulses (1916 after 
filtering for 0.025 < tk < 5 s), 757 grumble sub- pulses (731), 1068 sub- pulse transitory elements (374), 
816 pulse bodies (11), and 4422 bubble sub- pulses (4193). From the extracted IOIs, we calculated 

https://doi.org/10.7554/eLife.88348
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Figure 1. Organization and rhythmic features of orangutans’ long calls. (A) Top: the spectrogram of a full pulse and its organization in sub- pulses 
(e.g., grumble sub- pulses). Below are the spectrograms of the three other sub- element types: sub- pulse transitory elements, pulse bodies, and bubble 
sub- pulses. Bars on the top of each spectrogram schematically quantify the durations of inter- onset intervals (tk): dark green denotes the higher level 
of organization (full pulse). Orange (in the inset) and light green (bottom right) denote the lower- level organization (sub- pulse element types). (B) 

Figure 1 continued on next page
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their rhythmic ratio by dividing each IOI by its duration plus the duration of the following interval. We 
then computed the distribution of these ratios to ascertain whether the rhythm of long call full and 
sub- pulses presented natural categories, following published protocols (De Gregorio et al., 2021; 
Roeske et al., 2020; Figure 1B–D).

Results
The density probability function of orangutan full pulses showed one peak (rk = 0.493) in close vicinity 
to a theoretically pure isochronic rhythm, that is, full pulses were regularly paced at a 1:1 ratio, 
following a constant tempo along the long call (Figure 1C). Our model (GLMM, full model vs null 
model: Chisq = 298.2876, df = 7, p<0.001; see Supplementary file 1) showed that pulse type, range 
of the curve (on- off- isochrony), and their interaction had a significant effect on the count of rk values. 
In particular, full pulses’ isochronous peak tested significant ( t. ratio = −15.957, p<0.0001), that is, the 
number of rk values falling inside the on- isochrony range was significantly higher than the number 
of rks falling inside the off- isochrony range (Figure 1C). Critically, three (of the four) orangutan sub- 
pulse element types – grumble sub- pulses, sub- pulse transitory elements, and bubble sub- pulses – 
also showed significant peaks (grumble sub- pulses: t.ratio = –5.940, p<0.0001; sub- pulse transitory 
elements: t.ratio = −4.048, p=0.0001; bubble sub- pulses: t.ratio = –10.640, p<0.0001) around pure 
isochrony (peak rk: grumble sub- pulses = 0.501; sub- pulse transitory elements = 0.495; bubble sub- 
pulses = 0.502; Figure 1C). That is, sub- pulses were regularly paced within regularly paced full pulses, 
denoting isochrony within isochrony (Figure 1C) at different average tempi [mean tk (sd): full pulses 
= 1.696 (0.508); grumble sub- pulses = 0.118 (0.111); sub- pulse transitory elements = 0.239 (0.468); 
bubble sub- pulses = 0.186 (0.292); Figure 1B]. Overall, sub- pulses’ tk was equivalent to 0.046 of their 
comprising full pulses (Figure 1D), which puts sub- pulses at an approximate ratio of 1:22 relative to 

Figure 2. Isochrony nested within isochrony. Three acoustically distinct sub- pulse calls occurring at three distinct tempi nested within the same pulse- 
level tempo in wild flanged male orangutan long calls. 

Probability density function showing the distributions of the inter- onset intervals (tk) for each of the long call element types. (C) The distributions on 
the left show rhythm ratios (rk) per element type as calculated on 12 flanged males for a total of 1915 full pulses and 5309 sub- pulses. Solid sections of 
the curves indicate on- isochrony rk values; striped sections indicate off- isochrony rk values. A solid white line indicates the 0.5 rk value corresponding to 
isochrony. White dotted lines denote the on- isochrony peak value extracted from the probability density function. Right: a bar plot per each element 
type shows the percentage of observations (rk) falling into the on- isochrony boundaries (solid bars) or on off- isochrony boundaries (striped bars). The 
number of on- isochrony rk is significantly larger (GLMM, full vs null: Chisq = 2717.543, p<0.001) than the number of off- isochrony rk for all long call 
element types (full pulse: t- ratio = −25.164, p<0.001; bubble sub- pulse: t- ratio = –30.694, p<0.001; grumble sub- pulse: t- ratio = −14.526, p<0.001; sub- 
pulse transitory element: t- ratio = −3.148, p<0.001). Pulse body showed no rk values falling within the on- off- isochrony boundaries. (D) Distribution of a 
variable calculated as the ratio between the tk of a sub- pulse and the tk of the corresponding higher level of organization, the full pulse. We report the 
peak value of the curve (0.046) and tested the significance of the extent of the central quartiles, which was significantly smaller than peripheral quartiles 
(Wilcoxon signed- rank test: W = 2272, p<0.001).

Figure 1 continued
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that of full pulses, the smallest categorical temporal rhythmic interval registered thus far in a verte-
brate (De Gregorio et al., 2021; Roeske et al., 2020).

Permuted discriminant function analyses (Mundry and Sommer, 2007) (crossed, in order to control 
for individual variation) in R (R Development Core Team, 2013) based on seven acoustic measures 
extracted from grumble, transitory elements, and bubble sub- pulses confirmed that these repre-
sented indeed acoustically distinct sub- pulse categories, where the percentage of correctly classified 
selected cases (62.7%) was significantly higher (p=0.001) than expected (37%).

Discussion
Rhythmic analyses of orangutan long calls reveal the presence of self- embedded isochrony in the 
vocal combinatorics of a wild great ape. Notably, we found that wild orangutan long calls exhibit two 
discernible structural strata – the full- and sub- pulse level – and three non- exclusive nested motifs in 
the form of [isochronyA [isochronya,b,c]](Figure 2).

This is fundamentally distinct from a simple repetition of calls or call isochrony – when a call repeats 
linearly at a constant interval – which are common features in some animal sound communication 
systems (De Gregorio et al., 2023). Instead, we demonstrate how a vocal element repeated at a 
constant interval is itself composed by (one of three possible) vocal elements that also repeat them-
selves at a constant interval of different tempi.

The orangutans’ production of recursive vocal motifs in the wild, and therefore, without training, 
is especially compelling in the context of the lab- based work that shows that nonhuman animals can 
learn recursion with training (Ferrigno et al., 2020; Gentner et al., 2006; Liao et al., 2022). Some 
aspects of these vocal combinatoric structures could be potentially learned as well (Lameira et al., 
2022; Lameira et al., 2016; Lameira et al., 2015; Lameira and Shumaker, 2019b; Wich et al., 2012), 
but this study is agnostic on this matter because its design does not allow to single out learning 
effects. Nonetheless, results show that temporal recursion occurs spontaneously in the wild in great 
ape vocal communication.

Can great apes hear recursive isochrony?
The observation that the long calls of wild orangutans possess isochronous characteristics raises ques-
tions about the ability of apes to perceive these signals. Humans perceive an acoustic pulse as a 
continuous pitch, instead of a rhythm, at rates higher than 30 Hz (i.e., 30 beats per second). Human 
and nonhuman great apes have similar auditory capacities (Quam et al., 2015), and there are limited 
skeletal differences in inner ear anatomy to suggest significantly distinct sensitivity, resolution, or 
activation thresholds in the time domain (Quam et al., 2015; Spoor and Zonneveld, 1998; Stoessel 
et al., 2023). Long call sub- pulses exhibited average rhythms at ~9.263 (sd: 3.994) Hz [i.e., tk = 0.184 
(0.303) s]. Therefore, ear anatomy offers confidence that orangutans (and other great apes), like 
humans, perceive sub- pulse rhythmic motifs at these rates as such, that is, a train of signals, instead 
of one uninterrupted signal. Assuming otherwise would imply that auditory time resolution differs by 
more than one order of magnitude between humans and other great apes in the absence of obvious 
anatomical culprits.

Can physiology fully explain recursive isochrony?
The occurrence of three non- exclusive recursive patterns (i.e., three acoustically distinct sub- pulse calls 
occurring at three distinct tempi nested within the same pulse- level tempo) substantially decreases 
the probability that recursion was the by- product of anatomic constraints, such as vocal fold oscilla-
tion, breath length, heartbeat, and other physiological processes or movements (Pouw et al., 2020). 
Such processes can generate frequency patterns nested within others; however, in these cases, sub- 
frequencies occur in the form of harmonics related to the reference (dominant) frequency and to each 
other by small whole- numbered multiples. Yet, the three observed rhythmic arrangements at the 
sub- pulse level were not related to the pulse level by any small integer ratios (i.e., 1/22). Also, some 
of these processes (e.g., vocal fold action) are oscillatory in nature, involving nested frequency waves. 
They are not combinatorial, involving nested sequences of events, as we report here.

Our data stimulate new questions about the relationship between oscillators and combinatoriality, 
which is difficult to investigate from an observational point of view in the wild. Hopefully, our results 
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will inspire new studies using controlled experimental settings to assess how oscillators and combina-
toriality may be associated in ways potentially richer than thus far suspected. Together, our findings 
suggest that recursive isochrony is not the absolute result of raw mechanics but is instead likely gener-
ated or tampered with by, at least, one temporally recursive neuro- motor procedure.

Can a linear algorithm produce recursive isochrony?
The occurrence of three non- exclusive recursive patterns drives down the likelihood that orang-
utans concatenate long call pulses and sub- pulses in a linear fashion and without bringing into play a 
recursive neuro- motoric process. To generate the observed vocal motifs linearly, three independent 
neuro- computational procedures would need to run in parallel. These three independent procedures 
would need to be indistinguishable, transposable, and/or interchangeable at the pulse level, whilst 
generating distinct rhythms and acoustics at the sub- pulse level. If theoretically possible at all, one 
would predict some degree of interference between the three linear procedures at the pulse level, 
manifested in some form of deviation around the isochrony peak. However, this was not observed; 
distribution of data points on and off isochrony was equivalent between pulses and sub- pulses.

Precursor forms are not modern forms
Recursive self- embedded vocal motifs in orangutans indicate that vocal recursion among hominids 
is not exclusive to human vocal combinatorics, at least in the form of temporally embedded regular 
rhythms. This is not to suggest that orangutan recursive motifs exhibit all other properties that recur-
sion exhibits in modern language- able humans, or that the two are the same, or equivalent. Further 
research will be necessary to fully unveil how orangutans use and control vocal recursion to form 
a clearer evolutionary picture. Expecting equivalence with language is, however, unwarranted as it 
would imply that no evolution would have occurred in over 10 million years since the split between 
the orangutan and human lineages. Any differences between our findings and recursion in today’s 
syntax, phonology, or music do not logically reject the possibility that recursive isochrony represents 
an ancient, and perhaps ancestral, state for the evolution of vocal recursion within the hominid family.

Implications for the evolution of recursion
Recursion and fractal phenomena are prevalent across the universe. Celestial and planetary move-
ment, the splitting of tree branches, river deltas and arteries, and the morphology of bacteria colonies. 
Patterns within self- similar patterns are the norm, not the exception. This makes the seeming singu-
larity of human recursion amongst animal vocal combinatorics all the more enigmatic. The discovery of 
recursive vocal patterns organized along two hierarchical temporal levels in a hominid besides humans 
suggests that ‘sequences within sequences’ may have been present in ancestral hominids, and hence, 
that second- order sequences may have predated the emergence of language in the human lineage.

Three major implications for the evolution of recursion in language apply. First, much ink has been 
laid on the topic. Yet, the possibility of self- embedded isochrony, or non- exclusive self- embedded 
patterns occurring within the same signal sequence, has on no account been formulated or conjec-
tured as a possible state of recursive signaling, be it in vertebrates, mammals, primates, or otherwise, 
extant or extinct. This suggests that controversy may have been underscored by data- poor circum-
stances on vocal combinatorics in wild great apes, which only now start gathering comprehensive 
research effort (Bortolato et al., 2023a; Bortolato et al., 2023b; Girard- Buttoz et al., 2022; but see 
Lameira et al., 2013a). Resolution may come through a re- evaluation of previous studies with further 
related taxa and with experimental tests designed within a richer and more articulated panorama of 
observations on vocal combinatorics in wild great apes. Recursive vocal patterning in a wild great ape 
in the absence of syntax, semantics, phonology, or music opens a new charter for possible incipient 
and transitional states of recursion among hominids. The open discussion of what properties make a 
structure proto- recursive will be essential to move the state of knowledge past antithetical, dichot-
omous notions of how recursion and syntax evolved (Berwick and Chomsky, 2019; Martins and 
Boeckx, 2019).

Second, our findings invite renewed interest and reanalysis of primate vocal combinatorics in the 
wild (Gabrić, 2022; Girard- Buttoz et al., 2022; Leroux et al., 2023; Leroux et al., 2021). Given the 
dearth of such data, findings imply that it may be too hasty to discuss whether combinatorial capac-
ities in primates or birds are equivalent to those engaged in syntax (Engesser et al., 2015; Watson 
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et al., 2020) or phonology (Bowling and Fitch, 2015; Rawski et al., 2021). Such classifications may 
be putting the proverbial cart before the horse; they are based on untested assumptions that may 
not have applied to proto- recursive ancestors (Kershenbaum et  al., 2014; Miyagawa, 2021), for 
example, that syntax and phonology evolved as separate ‘modules’, that one attained modern form 
before the other, or that they evolved in hominids regardless of whether consonant- like and vowel- like 
calls were present or not.

Third, given that isochrony universally governs music and that recursion is a feature of music, find-
ings could suggest a possible evolutionary link between great ape loud calls and vocal music. Loud 
calling is an archetypal trait in primates (Wich and Nunn, 2002) and among ancient hominids it could 
have preceded, and subsequently transmuted, into modern recursive vocal structures in humans, as 
found today in the form of song and chants. Given their conspicuousness, loud calls represent one 
of the most studied aspects of primate vocal behavior (Wich and Nunn, 2002), but their rhythmic 
patterns have only recently started to be characterized with precision (Clink et al., 2020; De Gregorio 
et al., 2021; Gamba et al., 2016). Besides our analyses, there are remarkably few confirmed cases of 
vocal isochrony in great apes (but see Raimondi et al., 2023). The behaviors that have been rhythmi-
cally measured with accuracy have been implicated in the evolution of percussion (Fuhrmann et al., 
2015) and musical expression (Dufour et al., 2015; Hattori and Tomonaga, 2020), such as social 
entrainment in chimpanzees in connection with the origin of dance (Lameira et al., 2019a) (a capacity 
once also assumed to be neurologically impossible in great apes; Fitch, 2017; Patel, 2014). This 
opens the intriguing, tentative possibility that recursive vocal combinatorics were first and foremost 
a feature of proto- musical expression in human ancestors, later recruited and ‘re- engineered’ for the 
generation of linguistic combinatorics. Future studies probing for recursive call sequence patterns in 
other orangutan vocal contexts and other great ape vocal behaviors could help test this idea.

Concluding remarks
The presence of temporally recursive vocal motifs in a wild great ape revolutionizes how we can 
approach the evolution of recursion along the human lineage beyond all- or- nothing accounts. Future 
studies on primate vocal combinatorics, particularly undertaking a structural approach and in the wild, 
offer promising new paths to empirically assess possible precursors and proto- states for the evolu-
tion of recursion within the hominid family, also adding temporal recursion as a new layer of analysis. 
These crucial data on the evolution of recursion, language, and cognition along the human lineage will 
materialize if, as stewards of our planetary co- habitants, humankind secures the survival of nonhuman 
primates and the preservation of their habitats in the wild (Estrada et al., 2022; Estrada et al., 2017; 
Laurance, 2013; Laurance et al., 2012).

Materials and methods
Study site
We conducted our research at the Tuanan Research Station (2°09′S; 114°26′E), Central Kalimantan, 
Indonesia. Long calls were opportunistically recorded from identified flanged males (P. pygmaeus 
wurmbii) using a Marantz Analogue Recorder PMD222 in combination with a Sennheiser Microphone 
ME 64 or a Sony Digital Recorder TCD- D100 in combination with a Sony Microphone ECM- M907.

Acoustic data extraction
Audio recordings were transferred to a computer with a sampling rate of 44.1 kHz. Seven acoustic 
measures were extracted directly from the spectrogram window (window type: Hann; 3  dB filter 
bandwidth: 124 Hz; grid frequency resolution: 2.69 Hz; grid time resolution: 256 samples) by manu-
ally drawing a selection encompassing the complete long call (sub)pulse from onset to offset using 
Raven interactive sound analysis software (version 1.5, Cornell Lab of Ornithology). These parameters 
were duration (s), peak frequency (Hz), peak time, peak frequency contour average slope (Hz), peak 
frequency contour maximum slope (Hz), average entropy (Hz), and signal- to- noise ratio (NIST quick 
method). Please see the software’s documentation for a full description of the parameters. Acoustic 
data extraction complemented the classification of long calls elements, both at the pulse and sub- 
pulse levels, based on close visual and auditory inspection of spectrograms, both based on elements’ 
distinctiveness between each other as well as in relation to the remaining cataloged orangutan call 

https://doi.org/10.7554/eLife.88348
https://ravensoundsoftware.com/knowledge-base/pitch-tracking-frequency-contour-measurements/
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repertoire (Hardus et al., 2009; see also Supplementary files 2–5). Of these parameters, duration 
and peak frequency in particular have been shown to be resilient across recording settings (Lameira 
et al., 2013b) and adequately represent variation in the time and frequency axes (Lameira et al., 
2017b).

Rhythm data analyses
IOIs (IOI’s = tk) were only calculated from the begin time (s) of each full- and sub- pulse long call 
elements using Raven interactive sound analysis software, as above explained. tk was calculated only 
from subsequent (full/sub) pulse elements of the same type. Ratio values (rk) were calculated as tk/(tk + 
tk+1). Following the methodology of Roeske et al., 2020 and De Gregorio et al., 2021, to assess the 
significance of the peaks around isochrony (corresponding to the 0.5 rk value), we counted the number 
of rks falling inside the on- isochrony ranges (0.440 < rk < 0.555) and off- isochrony ranges (0.400 < rk < 
0.440 and 0.555 < rk < 0.600), symmetrically falling at the right and left sides of 1:1 ratios (0.5 rk value). 
We tested the count of on- isochrony rks versus the count of off- isochrony rks, per pulse type, with a 
GLMM for negative- binomial family distributions, using glmmTMB R library. In particular, we built a 
full model with the count of rk values as the response variable, the pulse type in interaction with the 
range the observation fell in (on- or off- isochrony) as predictors. We added an offset weighting the 
rk count based on the width of the bin. The individual contribution was set as random factor. We built 
a null model comprising only the offset and the random intercepts. We checked the number of resid-
uals of the full and null models, and compared the two models with a likelihood ratio test (ANOVA 
with ‘Chisq’ argument). We calculated p- values for each predictor using the R summary function and 
performed pairwise comparisons for each level of the explanatory variables with emmeans R package, 
adjusting all p- values with Bonferroni correction. We checked normality, homogeneity (via function 
provided by R. Mundry), and number of the residuals. We checked for overdispersion with perfor-
mance R package (Lüdecke et al., 2021). Graphic visualization was prepared using R (R Development 
Core Team, 2013) packages ggplot2 (Wickham, 2009) and ggridges (Wilke, 2022). Data reshape and 
organization were managed with dplyr and tidyr R packages.

Acoustic data analyses
Permutated discriminant function analysis with cross- classification was performed using R and a func-
tion provided by R. Mundry (Mundry and Sommer, 2007). The script was  pdfa. res= pDFA. crossed ( 
test. fac="Sub- pulse- type",  contr. fac="Individual.ID", variables=c("Delta.Time", "Peak.Freq", "Peak.
Time", "PFC.Avg.Slope", "PFC.Max.Slope", "Avg.Entropy", "SNR.NIST.Quick"),  n. to. sel= NULL, 
n.sel=100, n.perm=1000,  pdfa. data= xdata). These analyses assured that long call elements, at the 
pulse and sub- pulse levels, indeed represented biologically distinct categories.
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